Homework 5, due 10/29

- 1. Let $f: D \to D$ be holomorphic on the unit disk D, such that f(0) = 0.
 - (a) Prove that

$$|f(z) + f(-z)| \le 2|z|^2$$

for all $z \in D$.

- (b) Suppose that $|f(z_0) + f(-z_0)| = 2|z_0|^2$ for some $z_0 \neq 0$. Show that then $f(z) = e^{i\theta}z^2$ for some constant $\theta \in \mathbf{R}$, for all $z \in D$.
- 2. Let $A \subset \mathbf{C}$ denote the half-disk $A = \{z : |z| < 1, \operatorname{Re} z > 0\}$, and B denote the quarter plane $B = \{z : \operatorname{Re} z, \operatorname{Im} z > 0\}$.
 - (a) Find a biholomorphism $f: A \to B$.
 - (b) Find a biholomorphism $g: B \to D(0, 1)$ to the unit disk.
- 3. Does there exist a surjective holomorphic map from the unit disk to C?
- 4. Show that the map

$$z \mapsto \int_1^z \frac{dw}{(1-w^n)^{2/n}}$$

is a biholomorphism from the unit disk to the interior of a regular n-gon.